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By evaluating multipole susceptibility of a seven-orbital impurity Anderson model with the use of a numeri-
cal renormalization group method, we discuss possible multipole states of actinide dioxides at low tempera-
tures. In particular, here we point out a possible scenario for multipole ordering in americium dioxide. For
Am4+ ion with five 5f electrons, it is considered that the ground state is �7

− doublet and the first-excited state
is �8

− quartet, but we remark that the f5 ground state is easily converted due to the competition between
spin-orbit coupling and Coulomb interactions. Then, we find that the �8

− quartet can be the ground state of
AmO2 even for the same crystalline electric-field potential. In the case of �8

− quartet ground state, the numeri-
cal results suggest that high-order multipoles such as quadrupole and octupole can be relevant to AmO2.
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I. INTRODUCTION

Actinide dioxides with the fluorite structure of the space
group Fm3m have been studied intensively for more than
fifty years both from experimental and theoretical sides.1,2 A
typical target material is UO2 mainly due to its technological
importance as a nuclear reactor fuel and a heterogeneous
catalyst. As for theoretical research, a clear picture of the
electronic structure in UO2 has been obtained. In fact,
neutron-scattering results show that UO2 is a noncollinear
antiferromagnet below 30.8 K.3 Detailed analysis of core
photoemission spectra has suggested that UO2 is an insulator
of Mott-Hubbard type.4 The crystalline electric field �CEF�
states of UO2 have been also determined.5

Concerning NpO2, over fifty years since 1953,6 it has
been known to exhibit a mysterious low-temperature ordered
phase.7,8 Several phenomenological works on the ordered
phase have claimed a key role of octupole degree of
freedom.9–13 The CEF states of NpO2 have been determined
by neutron-scattering experiment.14 Recently, the octupole
order has been strongly supported by 17O-NMR experiment15

and by inelastic neutron-scattering study.16 In order to under-
stand why such high-order multipole ordering appears, it is
necessary to proceed to the research in a microscopic level.
For this issue, it has been shown that octupole order actually
characterizes the ground state of NpO2 by the analysis of an
f-electron model on the basis of a j-j coupling scheme on an
fcc lattice.17,18

On the other hand, PuO2 is known to be a semiconductor
with magnetic susceptibility which is almost independent of
temperature up to 1000 K, since the CEF ground state is �1

+

singlet and the first-excited state is �4
+ triplet with the large

excitation energy as 123 meV.19,20 Thus, from the viewpoint
of magnetism, PuO2 did not attract much attention.

Now let us turn our attention to AmO2. Probably due to
the difficulty in the treatment of this material with high ra-
dioactivity, we cannot find lots of experimental results on
AmO2. In 1969, Mössbauer isomer shift in AmO2 was
measured.21 After that, the magnetic susceptibility was mea-
sured and the peak was found around at 15 K.22 Naively
thinking, such a peak seems to suggest the signal of antifer-

romagnetic ordering, while neutron-diffraction measurement
did not detect antiferromagnetic order in agreement with the
Mössbauer measurement.23 This situation looks similar to
that of NpO2. Namely, multipole degree of freedom seems to
be a key issue in AmO2 to reconcile experimental results, as
has been proposed for NpO2 in the context of octupole or-
dering.

Here we note that the CEF ground state of AmO2 was
considered to be �7

− doublet from the experimental
results,22,24,25 but it could not bring higher multipoles. This is
in sharp contrast to the case of NpO2 with the confirmed
CEF ground state of �8

− quartet. Due to the CEF analysis of
actinide dioxides, the �7

− doublet ground state has been
suggested.26 Thus, it seems to be the mainstream in the re-
search of actinide dioxides to clarify a mechanism which
explains the disappearance of antiferromagnetic order for the
�7

− doublet ground state.
However, we believe that there still exists an alternative

scenario on the basis of multipole ordering in AmO2, when
we recall the fact that the CEF ground state of the f5 electron
system is easily converted due to the competition between
spin-orbit coupling and Coulomb interaction.27 This point
has been also discussed by the present author to propose a
possible scenario which explains the change of the CEF
ground state among Sm-based filled skutterudite
compounds,28 since trivalent Sm ion includes five 4f elec-
trons. It has been experimentally29–32 and theoretically29–33

shown that the angular momentum coupling of the 5f states
of Am is situated between the LS and j-j coupling limits for
many chemical situations, albeit closer to the j-j limit. Thus,
a strong spin-orbit coupling is present in the 5f states of f5

and f6 configurations of Am that can compete with Coulomb
interactions. Accordingly, it is believed to be meaningful to
pursue a possibility of multipole ordering in AmO2 with the
�8

− quartet ground state.
In this paper, we show that multipole order is possible in

AmO2, when we appropriately take into account both spin-
orbit coupling and Coulomb interaction in the f-electron
terms for the CEF ground state. In the case of five f electrons
such as Am4+ ion, the ground state is easily converted be-
tween �7

− and �8
−, when spin-orbit coupling and Coulomb
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interaction compete with each other. Then, the �8
− quartet can

be the ground state, even if the CEF potential is unchanged.
In order to see what type of multipole is relevant, we evalu-
ate the multipole susceptibility of the Anderson model by
using a numerical renormalization group method. We find
that higher-order multipoles are actually relevant to AmO2
within the present calculation.

The organization of this paper is as follows. In Sec. II, we
discuss the local f-electron state emerging from the compe-
tition among the Coulomb interaction and spin-orbit cou-
pling under the CEF potential. In particular, the change of
the f5 ground state is explained in detail. In Sec. III, we show
the model Hamiltonian. In order to discuss multipole prop-
erties, it is necessary to define the multipole operator. Here
we explain the description of the multipole as spin-charge
complex one-electron operator. Then, we briefly explain the
numerical technique used in this paper. In Sec. IV, we show
the results of the multipole state for the case of n=2�5,
where n is the local f-electron number. In particular, the
results for n=5 are discussed in detail. Finally, the paper is
summarized in Sec. V. Throughout this paper, we use such
units as �=kB=1.

II. LOCAL f-ELECTRON STATE

Let us first discuss the local f-electron states of actinide
ions. The local Hamiltonian should be composed of three
parts as

Hloc = Hso + Hint + HCEF. �1�

The first term denotes the spin-orbit coupling, given by

Hso = � �
m,m�

�
�,��

�m,�,m�,��fm�
† fm���, �2�

where �=+1 �−1� for up �down� spin, fm� is the annihilation
operator for f electron with spin � and z-component m of
angular momentum �=3, � is the spin-orbit coupling,
�m,�1,m,�1= �m /2, �m�1,�1,m,�1=�12−m�m�1� /2, and
zero for the other cases.

The second term indicates the Coulomb interaction
among f electrons, expressed as

Hint = �
m1�m4

�
�,��

Im1m2,m3m4
fm1�

† fm2��
† fm3��fm4�, �3�

where the Coulomb integral Im1,m2,m3,m4
is given by

Im1,m2,m3,m4
= �

k=0

6

Fkck�m1,m4�ck�m2,m3� . �4�

Here Fk is the radial integral for the k-th partial wave, called
Slater integral or Slater-Condon parameter34,35 and ck is the
Gaunt coefficient.36,37 Note that the sum is limited by the
Wigner-Eckart theorem to even values �k=0, 2, 4, and 6�.

The third term is the CEF potential, given in the one-
electron potential form as

HCEF = �
m,m�

�
�

Bm,m�fm�
† fm��, �5�

where Bm,m� is the CEF potential. Since the fluorite structure
belongs to Oh point group, Bm,m� is given by using a couple
of CEF parameters B4

0 and B6
0 for angular momentum �=3

as38

B3,3 = B−3,−3 = 180B4
0 + 180B6

0,

B2,2 = B−2,−2 = − 420B4
0 − 1080B6

0,

B1,1 = B−1,−1 = 60B4
0 + 2700B6

0,

B0,0 = 360B4
0 − 3600B6

0,

B3,−1 = B−3,1 = 60�15�B4
0 − 21B6

0� ,

B2,−2 = 300B4
0 + 7560B6

0. �6�

Note the relation of Bm,m�=Bm�,m. Following the traditional
notation,39 we define

B4
0 = Wx/F�4�, B6

0 = W�1 − �x��/F�6� , �7�

where x and the sign of W specify the CEF energy scheme,
while �W� determines the energy scale for the CEF potential.
Concerning nondimensional parameters, F�4� and F�6�, we
use F�4�=15 and F�6�=180 for �=3.38

Here we briefly explain the parameters of the local Hamil-
tonian. Concerning Slater-Condon parameters, first we set
F0=10 eV by hand, since we are not interested in the deter-
mination of the absolute value of the ground-state energy.
Others are determined so as to reproduce excitation spectra
of U4+ ion with two 5f electrons.40 Here we show only the
results: F2=6.36 eV, F4=5.63 eV, and F6=4.13 eV. As for
spin-orbit coupling �, we use the values of actinide atoms
such as �=0.235 �U�, 0.272 �Np�, 0.311 �Pu�, and 0.351 eV
�Am�.

For the estimation of the CEF parameters, let us summa-
rize the CEF energy levels of actinide dioxides. For UO2, the
ground state is �5

+ triplet and the first-excited state is �3
+

doublet with the excitation energy 150 meV.5 For NpO2, the
ground and first-excited states are, respectively, �8

−�2� and
�8

−�1� quartets with the excitation energy 55 meV.14 For PuO2,
the ground state is �1

+ singlet, while the first-excited state is
�4

+ triplet with the excitation energy 123 meV.19,20

Now we set the CEF parameters for actinide dioxides in
the present notation. For the purpose, first we estimate W and
x so as to reproduce the CEF scheme of UO2 by the f2

electrons state. This is not a difficult task, since the CEF
parameters are easily restricted from the experimental re-
sults. After that, among the values of W and x appropriate for
UO2, we further restrict the values of W and x which can also
reproduce the results for NpO2 and PuO2. Note that the CEF
states for f3 and f4 states are almost reproduced by using the
parameters of f2 electron state. Since the CEF term is just
given by the one-electron potential, the CEF effect is not so
drastically changed among the materials with the same crys-
tal structure, even though the f-electron number is different.
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After some calculations, we determine W=−10.5 meV
and x=0.62. The results for the CEF level schemes are sum-
marized in Fig. 1. It is observed that the CEF states of UO2,
NpO2, and PuO2 are well reproduced. Note here that for the
same CEF parameters, the ground state for Am4+ is found to
be �7

− doublet and the excited state is �8
− quartet with the

excitation energy of about 50 meV. This is consistent with
the previous theoretical results on the CEF states of AmO2
obtained by more detailed calculations.26

Naively thinking, there occurs ordering of magnetic mo-
ment originating from �7

− ground state for AmO2, but it
seems to be contradict with neutron-diffraction study. In or-
der to resolve such contradiction, there are two ways: one is
to consider a mechanism which explains the disappearance
of magnetic moment even in the �7

− ground state. Another
way is to reconsider the local f-electron term by focusing on
spin-orbit coupling and Coulomb interaction. Here we pro-
pose an alternative scenario on the basis of the second direc-
tion.

Thus far, we have simply assumed that Coulomb interac-
tion is not changed among different actinide ions, but in
actuality, they may be changed. Concerning spin-orbit cou-
pling, we have used the values in actinide atom, but it may
be also changed in the ionic states. Then, we point out that
for f5 systems, the CEF states are sensitively changed by the
competition between Coulomb interaction and spin-orbit
coupling in comparison with other values of local f-electron
number.27,28

In order to understand that the effect of Coulomb interac-
tion and spin-orbit coupling appears in the CEF parameters,
here we express the CEF parameter B4

0 by using the so-called
Stevens’ factor as

B4
0 = A4�r4�	J

�n�, �8�

where Ak is the parameter depending on materials, �rk� de-
notes the radial average of local f-electron wave function, n
denotes the local f-electron number, J is the total angular
momentum of the ground-state multiplet, and 	J

�n� indicates
the Stevens’ factor, which is one of coefficients appearing in
the method of Stevens’ operator equivalent.41

For the case of n=5, it is well known that the ground-state
multiplet is characterized by J=5 /2. After lengthy calcula-
tions, for n=5 and J=5 /2, we can obtain that 	5/2

�5�

= �13 /21�	3 in the LS coupling scheme and 	5/2
�5� =

−�11 /7�	3 in the j-j coupling scheme,27 where 	3 denotes
the Stevens factor for �=3, given by 	3=2 /495. It should be

noted that the sign of 	J
�n� is changed between the LS and j-j

coupling schemes, suggesting that the ground state is con-
verted, when Coulomb interaction and/or spin-orbit coupling
are changed.

The modification of Coulomb interaction and spin-orbit
coupling is closely related to the picture for multi f-electron
state. The CEF level schemes in Fig. 1 is qualitatively un-
derstood by a j-j coupling scheme. Namely, by assuming that
the effective Hund’s rule coupling is smaller than the CEF
level splitting, we simply accommodate plural numbers of f
electrons in the levels of �8

− ground and �7
− excited states.

Then, we can easily reproduce all the CEF level schemes of
tetravalent actinide ions. However, the conversion of the
CEF ground state for n=5 indicates that the actual situation
should be slightly shifted to the side of the LS coupling
scheme. We note that due to such a shift, the CEF states for
n=2, 3, and 4 are not qualitatively changed, while in the case
of n=5, the ground state is converted.

Here we emphasize that such a ground-state conversion
occurs in the region of realistic values of Coulomb interac-
tion and spin-orbit coupling, as has been pointed out in the
discussion of the CEF states of Sm-based filled
skutterudites.28 In fact, as mentioned in Sec. I, it has been
shown that the angular momentum coupling of the 5f states
of Am is situated between the LS and j-j coupling limits, but
it is rather closer to the j-j coupling limit.29–33 Thus, it seems
to be reasonable to change slightly spin-orbit coupling and/or
Coulomb interaction in the case of tetravalent Am ion.

If we resort to first-principles calculation, we may deter-
mine correctly Fj and �, but it is out of the scope of the
present paper. Here we simply introduce an artificial param-
eter r to control Coulomb interactions and spin-orbit cou-
pling as Fk→rFk and �→� /r with r
1.

In Fig. 2, we depict the energies of Hloc as functions of r
for n=5. We find that the conversion of the ground state
occurs around at r	1.3. Note that in other values of n, the
ground states are not changed. Thus, we can obtain the �8

−

quartet ground state for Am4+. In the following sections, we
will discuss how the multipole states actually appear when
we change the value of r for Am ion.

III. MODEL AND METHOD

A. Anderson model

Now we include the hybridization between localized and
conduction electrons. The Hamiltonian is the Anderson
model, given by
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FIG. 1. CEF energy level schemes for tetravalent actinide ions.
Parameters used here are explained in the main text.
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FIG. 2. �Color online� The CEF energy for n=5 vs r. The mean-
ing of r is explained in the main text.
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H = �
k,�

�kck�
† ck� + �

k,�,m
�Vmck�

† fm� + h.c.� + Hloc, �9�

where �k denotes conduction electron dispersion, ck� indi-
cates the annihilation operator for conduction electron with
momentum k and spin �, and Vm is the hybridization be-
tween conduction and f electrons.

Note that we consider only au single conduction band
with xyz symmetry composed of oxygen 2p electrons. Since
oxygen ions surrounding actinide ions are located in the

1, 1, 1� direction, there should exist a conduction band com-
posed of 2p electrons with xyz symmetry. This picture seems
to be consistent with band-structure calculation,42 but the
ignorance of t1u and t2u bands is just assumption. Here we
note that the hybridization occurs between the states with the
same symmetry of local f-electron state. Since the au con-
duction band has xyz symmetry, we set V2=−V−2=V and
zero for other m. Hereafter, a half of the bandwidth of au
conduction band D is set as the energy unit, i.e., D=1 eV.
We fix V as V /D=0.05 throughout this paper. Note that in
order to adjust the local f-electron number n, we appropri-
ately change the chemical potential in the actual calculation,
although we do not explicitly show such a term.

B. Multipole operator

In order to discuss multipole properties, it is necessary to

define the multipole operator X̂ for f electron.43–48 In general,

X̂ is expressed as

X̂ = �
k,�

p�
�k�T̂�

�k�, �10�

where k is a rank of multipole, � is a label to express Oh

irreducible representation, and T̂�
�k� is cubic tensor operator,

given by T̂�
�k�=�qG�,q

�k� T̂q
�k�. Here an integer q runs between −k

and k, T̂q
�k� is spherical tensor operator, and G�,q

�k� is the trans-
formation matrix between spherical and cubic harmonics. We
determine p�

�k� later.
In order to obtain explicit expression of the spherical ten-

sor operator T̂q
�k�, it is convenient to convert the f-electron

basis from �m ,�� to �j ,
�, where j is the total angular mo-
mentum and 
 is the z component of j. When we define f j

as the annihilation operator for f electron labeled by j and 
,

we obtain T̂q
�k� in the second-quantized form as

T̂q
�k� = �

j,
,
�

Tj;
,
�
�k,q� f j


† f j
�. �11�

Note that there are no components between different values
of j, since the matrix for total angular momentum is block-
diagonalized in the basis of �j ,
�. The matrix element of
Tj;
,
�

�k,q� is calculated by the Wigner-Eckart theorem as

Tj;
,
�
�k,q� =

�j��T�k���j�
�2j + 1

�j
�j
�kq� , �12�

where �j
 � j
�kq� indicates the Clebsch-Gordan coefficient
and �j��T�k���j� denotes the reduced matrix element for
spherical tensor operator, given by �j��T�k���j�

=��2j+k+1� ! / �2j−k�! /2k. Note that k�2j and the highest
rank of f-electron multipole is seven.

Let us now determine the coefficient p�
�k�. In order to dis-

cuss the multipole state, it is necessary to evaluate the mul-
tipole susceptibility in the linear response theory. However,
multipoles belonging to the same symmetry are mixed in
general, even if the rank is different. In addition, multipoles
are also mixed due to the CEF effect. Thus, we determine
p�

�k� by the normalized eigenstate of susceptibility matrix

�k�,k��� =
1

Z
�
i,j

e−Ei/T − e−Ej/T

Ej − Ei
�i�
T̂�

�k� − ��
�k���j�

� �j�
T̂��
�k�� − ���

�k����i� , �13�

where Ei is the eigenenergy for the i-th eigenstate �i� of H, T

is a temperature, ��
�k�=�ie

−Ei/T�i�T̂�
�k��i� /Z, and Z is the parti-

tion function given by Z=�ie
−Ei/T. Note that the multipole

susceptibility is given by the eigenvalue of the susceptibility
matrix.

C. Method

In order to evaluate multipole susceptibility of the Ander-
son model, we employ a numerical renormalization group
�NRG� method.49 in which momentum space is logarithmi-
cally discretized to include efficiently the conduction elec-
trons near the Fermi energy and the conduction electron
states are characterized by “shell” labeled by N. The shell of
N=0 denotes an impurity site described by the local Hamil-
tonian.

In the NRG method, we transform the Hamiltonian into
the recursion form as

HN+1 = ��HN + tN�
�

�cN�
† cN+1� + cN+1�

† cN�� , �14�

where � denotes a parameter for logarithmic discretization,
cN� indicates the annihilation operator of conduction electron
in the N shell, and tN is the hopping of electron between N
and �N+1� shells, expressed by

tN =
�1 + �−1��1 − �−N−1�

2��1 − �−2N−1��1 − �−2N−3�
. �15�

The initial term H0 is given by

H0 = �−1/2�Hloc + �
�

V�c0�
† fc� + fc�

† c0��
 . �16�

Each component of multipole susceptibility matrix Eq.
�13� is evaluated by using the renormalized state. Then, the
multipole state is defined by the eigenstates of Eq. �13�. We
note that the temperature T is defined as T=�−�N−1�/2 in the
NRG calculation, where N is the number of the renormaliza-
tion step. Due to the limitation of computer resources, we
keep only M low-energy states. In this paper, we set �=5
and M =3000.

IV. RESULTS

Now we discuss the multipole state of the Anderson
model Eq. �9�. In Figs. 3�a�–3�c�, we show T�� vs T for n
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=2, 3, and 4, where �� is the eigenvalue of the multipole
susceptibility. We use the same values of the parameters in
the Hamiltonian for n=2, 3, and 4. The values of the spin-
orbit coupling are �=0.235, 0.272, and 0.311 eV for n=2, 3,
and 4, respectively. The eigenstates are classified by irreduc-
ible representation of Oh point group. Here we use short-
hand notations such as “3g” and “5u,” which denote �3

+ and
�5

−, respectively, in the Bethe notation. Note that “1u” does
not appear among multipoles up to rank seven.

For n=2�UO2�, we find the optimized state is labeled by
4u, which is mainly composed of dipole �about 92%�. The
secondary components are quadrupoles �5 and 3g�, but �5g
and �3g is smaller in one order in comparison with �4u. For
n=3�NpO2�, as easily deduced from the �8

− quartet ground
state, we find varieties of multipoles. Among them, the pri-
mary component is 4u, which is mainly composed of dipole
�about 96%�. The secondary one is 2u octupole. In the third
group, another 4 and 5u are almost degenerate. We note that
this 4u is composed of higher multipole component and the
5u is mainly composed of octupole. The fourth component is
3g quadrupole. We emphasize the existence of octupoles �2
and 5u� with significant eigenvalues.

In the present calculation, we cannot determine the kind
of multipole ordering in actual systems. However, the multi-

poles which remain at low temperatures are the candidates
which will order in the actual system. In the case of NpO2, it
has been gradually revealed that triple-q order of 5u octupole
can naturally reconcile several kinds of experiments. The 5u
octupole is actually included in the multipoles in the present
calculations, although it is not dominant component.

For n=4 �PuO2�, we do not find any significant multipole
component, as easily understood from the �1

+ singlet ground
state which is well separated from the magnetic excited state.
In this sense, from the viewpoint of magnetism, this case
does not attract much attention.

Next we move on to the case of n=5, corresponding to
AmO2. In Fig. 4�a�, we show the results for n=5 by using the
parameters for r=1. Namely, the Coulomb interactions are
the same as those in Figs. 3�a�–3�c�. The spin-orbit coupling
is set as �=0.351 eV, which is the value for Am atom. In
this case, since the ground state is �7

− doublet, the component
which remains in the low-temperature region is 4u, which is
composed of dipole �about 25%� and octupole �about 75%�.
We note that the octupole component is significantly large in
comparison with the 4u states of UO2 and NpO2. In any case,
as we have expected, we find only magnetic 4u moment
originating from �7

− ground state for AmO2.
Then, we increase the value of r in order to move to the

side of the LS coupling scheme. In Fig. 4�b�, we plot T�� of
the multipole susceptibility for n=5 and r=1.5 with the �8

−

ground state �see Fig. 2�. In this case, we find that the pri-
mary component is 3g, which is mainly composed of quad-
rupole. The secondary component is 4u and we also find 5g,
4u, and 5u components with smaller eigenvalues. We note
that some multipoles of AmO2 are the same as those in
NpO2, except for 2u and 5g, although the corresponding ei-
genvalues are different.
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FIG. 3. �Color online� T�� vs temperature T for �a� UO2, �b�
NpO2, and �c� PuO2.

(b) AmO2

10
-3

10
-2

10
-1

10
0

T
χ γ

1g
2g
2u

3g
3u

4g
4u

5g
5u

r=1.0

(a) AmO2

10
-3

10
-2

10
-1

10
0

T
χ γ

1g
2g
2u

3g
3u

4g
4u

5g
5u

r=1.5

10-1010-9 10-8 10-7 10-6 10-5 10-4 10-3 10-2 10-1 100

T [eV]

10-1010-9 10-8 10-7 10-6 10-5 10-4 10-3 10-2 10-1 100

T [eV]

FIG. 4. �Color online� �a� T�� vs temperature T for n=5. The
parameters are the same as those in Fig. 2, except for the spin-orbit
coupling. �b� T�� vs temperature T for n=5 and r=1.5 with en-
hanced Coulomb interaction and reduced spin-orbit coupling.
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Now we provide a comment on the value of r, which is
introduced so as to increase the effect of Coulomb interac-
tions and decrease the magnitude of spin-orbit coupling.
Note, however, that the angular momentum coupling of the
5f states of Am is nowhere near as close to the LS coupling
limit as for Cm.31,33 Thus, we should not entirely or strongly
suppress the spin-orbit coupling in the 5f states of Am. It is
acceptable that we change slightly spin-orbit coupling and
Coulomb interaction. Accordingly, when the value of r is
increased so as to move toward the side of the LS coupling
scheme, we should pay due attention not to suppress spin-
orbit coupling too much.

V. DISCUSSION AND SUMMARY

In this paper, we have discussed the multipole state in the
low-temperature region, by analyzing the seven-orbital im-
purity Anderson model with the use of the NRG method. We
have found the multipole state for n=2, 3, and 4, which are
not in contradiction to the phases observed in UO2, NpO2,
and PuO2, respectively. Note here that we determine the can-
didates which will order in the actual periodic system at low
temperatures.

For the case of n=5, when we use the same parameters as
those for n=2�4, we have suggested the phase dominated
by magnetic moment. However, if we change slightly Cou-
lomb interactions and spin-orbit coupling, we have found the
�8

− quartet ground state for AmO2. In this situation, we have
shown that the low-temperature phase can contain multipoles
such as quadrupole and octupole. The parameters are artifi-
cially introduced here, but our purpose is to point out a pos-
sibility of the �8

− quartet ground state due to the competition
between Coulomb interactions and spin-orbit coupling.

Unfortunately, we cannot determine the kind of multipole
order only from the present calculation, but on the basis of
the same crystal structure, it is plausible that 5u octupole
order also appears in AmO2. On the other hand, it may be

possible to exploit other scenarios, e.g., quadrupole ordering,
which were invented for understanding of NpO2. In any
cases, the combination of phenomenological theory and mi-
croscopic experiment will be useful to finalize the kind of
multipole which orders at low temperatures in AmO2.

Experimentally it has been considered that the CEF
ground state of AmO2 is �7

− ground state. However, we be-
lieve that it is still meaningful to examine the experimental
results on the basis of the �8

− quartet ground state, although it
may be difficult to perform the microscopic experiments of
AmO2.

Finally, let us provide a comment on the simplification of
the model. In this paper, since we have considered only
single conduction band, there exists residual entropy in the
results. In actuality, it should be finally released when we
consider t1u and t2u conduction bands. This point is also re-
lated to the relevant multipole moment when we consider the
ordered state in the periodic systems. In this sense, the
present results are qualitative, but they include the actual
multipole which forms ordered state.

In summary, we have discussed the multipole state of ac-
tinide dioxides due to the evaluation of the multipole suscep-
tibility of the Anderson model. When Coulomb interaction
and spin-orbit coupling have been appropriately changed, it
has been found that multipoles including quadrupole and oc-
tupole are relevant to AmO2. It is believed that multipole
ordering can be detected in AmO2 in future experiments.
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